If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-104x+150=0
a = 10; b = -104; c = +150;
Δ = b2-4ac
Δ = -1042-4·10·150
Δ = 4816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4816}=\sqrt{16*301}=\sqrt{16}*\sqrt{301}=4\sqrt{301}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-104)-4\sqrt{301}}{2*10}=\frac{104-4\sqrt{301}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-104)+4\sqrt{301}}{2*10}=\frac{104+4\sqrt{301}}{20} $
| 2x-30=2x-2 | | x+(2x/25)=15433 | | -x+21=1/2-11+17 | | -3v=15v=7+8v+43 | | 0.5+4y=8 | | 7x^2+66x+116=0 | | 0=50+10t-4.9t^2 | | n^2+30n-216=0 | | (125)^(2-2n)=25^n | | 1.8=2xx= | | 25/100*100=x | | 10^q=1.000.000.000 | | -12.78=-2.1n-2.16 | | x+95=50 | | 4(a-3)+2(a-)=7 | | x=(-1/3)y=-1 | | 3(x+3)=6x-3 | | 3(m+2)-4(m-1)4(m-1)=7 | | y=1500(0.86)^3 | | y=250000(0.965)^7 | | y=150000(1.8)^5 | | y=150.000(1.8)^5 | | 14x=80.010 | | 4+8=3x9 | | (2(40)+1)+(5y+19)=180 | | (3x-19)+(2x-1)=180 | | (8x+9)+81=180 | | w+39=-55 | | (9x-12)+(5x-4)=180 | | p+22=-66 | | 8x+11=7x+14=180 | | 732=(x+18) |